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Abstract Statistical characteristics of cloud variability are examined for their dependence on averaging
scales and best representation of probability density function with the decade-long retrieval products of
cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North
Slope of Alaska (NSA) sites of the Department of Energy’s Atmospheric Radiation Measurement Program.
The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the
TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to
the mean), and skewness all quickly increase with the averaging window size when the window size is small
and becomemore or less flat when thewindow size exceeds 12h. On average, the cloud LWPat theTWPsite has
the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the
least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard
deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient
of 0.6. The comparison further shows that the lognormal, Weibull, and gamma distributions reasonably explain
the observed relationship between skewness and relative dispersion over a wide range of scales.

1. Introduction

Most of the physical processes related to clouds occur and interact with one another at scales smaller than
the typical grid box of current climate models. The parameterizations used to represent these subgrid
processes in climate models are generally formulated in terms of grid average (or in-cloud average) values of
the relevant cloud properties. Because the processes in question are typically nonlinear functions of cloud
properties, directly using grid average cloud properties to compute grid mean process rates without taking
account for the corresponding subgrid-scale variation can lead to significantly biases in the calculated
process rates [Pincus and Klein, 2000]. Probably, the most famous example is the systematic overestimation of
cloud albedo by the plane-parallel homogeneous assumption [Cahalan et al., 1994]. The sign of the bias due
to neglecting subgrid variability depends on whether the function representing the process is convex or
concave [Larson et al., 2001].

There is a wealth of literature examining the effects of subgrid cloud variability on microphysical processes
and radiative transfer, using theoretical approaches, in situ aircraft observations, or satellite observations.
Barker et al. [1996] and Shonk et al. [2010] evaluated the systematic biases in radiation calculations for various
representations of cloud subgrid variability. Pincus and Klein [2000], Larson et al. [2001], and Boutle et al. [2013]
attempted to demonstrate the importance of inclusion of subgrid cloud variability for accurate calculations of
microphysical rates. Griffin and Larson [2013] derived analytical schemes for upscaling local microphysical
processes; Griffin and Larson [2013] further demonstrated using large eddy simulations that the new analytical
schemes increase autoconversion of cloud droplets to raindrops and accretion of cloud droplets onto raindrops.
As a result, modern global climate models (GCMs) start to include the correction of the subgrid variability
biases of microphysical process rates [Morrison and Gettelman, 2008] and radiative transfer, either via scaling
of the cloud water content [e.g., Cahalan et al., 1994] or Monte Carlo methods [e.g., Pincus et al., 2003].

Although it is now widely recognized that the representation of cloud subgrid variability has significant effects
on GCM radiation and microphysical calculations, studies on how to represent the cloud subgrid variability
to minimize the radiative and microphysical biases [Kim et al., 2005; Wood and Hartmann, 2006] are limited.
As summarized by Tompkins [2002], various probability density functions (PDFs) have been used in
GCMs to represent cloud variability. Univariate Gaussian and gamma distribution functions were proposed,
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respectively, by Zhang et al. [2002] and
Morrison and Gettelman [2008] to
improve the consistency between
cloud microphysical parameterizations.
Larson and Griffin [2012] proposed to
use amultivariate lognormal distribution
to describe spatial subgrid variation of
clouds. Hill et al. [2012] provided a global
estimate of this subgrid variability for
ice clouds, parameterizing it in terms
of grid box size and cloud fraction
using CloudSat products. The exact
distribution of cloud condensate
within GCM gridbox is almost certainly
dependent on many aspects of the
atmospheric state. While it is infeasible

to fully resolve subgrid cloud PDF, it is possible to estimate the first few statistical moments of the PDF
based on high-order turbulence closure [Golaz et al., 2002; Tompkins, 2002]. If a functional form (e.g., the
Gaussian distribution or the gamma distribution) of the PDF is assumed, the subgrid cloud PDF can then be
readily derived using the estimated statistical moments. However, there is no general agreement as to
which distribution function should be used to describe the PDF.

Furthermore, studies have revealed that many parameterizations have strong scale dependence, and
because of the way cloud parameterizations are formulated, they are likely to be the most sensitive to scale
dependence issues. For instance, the strong scale dependence of many cumulus schemes arises from the
use of parcel models that are a strong function of vertical velocity, e.g., the Kain–Fritch scheme [Kain and
Fritsch, 1990; Kain, 2004]. However, studies on scale dependence are rare, perhaps because long-term global
cloud observations required for examining cloud subgrid variability and its scale dependence to guide
parameterization development are very limited. The Atmospheric Radiation Measurement Program (ARM)
of the Department of Energy (DOE) provides decade-long observations of cloud liquid water path (LWP) at
its three permanent sites, each representing a different climate [Stokes and Schwartz, 1994]. Cloud LWP is a
key parameter determining cloud radiative effects in GCMs and is one of the most extensively validated
retrievals among the ARM Program. This study focuses on the characterization of the statistical properties
of cloud LWP spatial variability as a function of scale and attempts to answer the question as to what is
the best PDF for describing the subgrid variability by the use of the long-term observations collected by
the DOE ARM Program at different sites.

The remainder of this paper is organized as follows. Section 2 provides a general description of the data used
in this study. Section 3 explores the dependence of the first three statistical moments of observed cloud
LWP on scale (or averaging window size). Section 4 examines the probability distribution of the observed
statistical moments of cloud LWP at the scale of current GCM grid sizes. The relationship between these
moments is explored in section 5. Section 6 evaluates if commonly used distribution functions can reproduce
the observed relationship between the statistical moments. Section 7 summarizes the findings of this study.

2. Data and Methods

The data used in this study are based on the measurements of vertically pointing microwave radiometers
operated by the U.S. DOE ARM program. For almost 2 decades, the ARM Program has operated two-channel
microwave radiometers at its Southern Great Plains (SGP), tropical western Pacific (TWP), and North Slope of
Alaska (NSA) sites. The TWP, SGP, and NSA sites are, respectively, located in tropical, midlatitude, and arctic
regions to collect cloud, aerosol, and radiation data in diverse climate regimes (Figure 1). Satellite-based
cloud retrievals provide better spatial coverage, but they rely on various assumptions about cloud droplet
size distribution or surface emissivity variability [Minnis et al., 2011]. Ground-based retrievals are widely used
to validate satellite cloud retrievals [Dong et al., 2008]. Ground and satellite retrievals are complimentary to
each other in terms of spatial/temporal coverage and resolution.

Figure 1. Locations of the DOE Atmospheric Radiation Measurement
Program’s three permanent sites: Southern Great Plains (SGP), tropical
western Pacific (TWP), and North Slope of Alaska (NSA).
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The DOE ARM microwave radiometers measure downwelling radiance at frequencies of 23.8 and 31.4 GHz,
and the measurements are used to retrieve column water vapor amount and liquid water path (LWP). The
datastream used in this study is the 20 s Microwave Water Radiometer: Water Liquid And Vapor Along Line
of Sight Path (“MWRLOS”) retrieval product during 1999 to 2012. The MWRLOS retrieval is based on a
statistical algorithm [Liljegren et al., 2001] that uses a radiative transfer model to derive a set of retrieval
coefficients, typically from a climatological data set of thermodynamic profiles from the nearby deployment
site [Cadeddu et al., 2013]. The accuracy of the LWP retrieval is within 0.03mm according to the product
document, and values below 0.03mm could be considered as clear-sky conditions (ARMmicrowave radiometer
handbook [Morris, 2006]). For clouds containing supercooled liquid, the retrieval uncertainty can be much
higher due to poor knowledge about the microwave absorption coefficient of supercooled liquid water
droplets [Kneifel et al., 2014]. Supercooled liquid cloud layers arewidely found at the NSA site [Shupe et al., 2008].
The data corresponding to clear sky are excluded from the analysis of this study. To detect clear-sky period,
we mainly use the Active Remote Sensing of Clouds (ARSCL) products that are based on cloud radar and
lidar observations [Clothiaux et al., 2000]. When the ARSCL data are not available, the MWRLOS product is
used, and data points with LWP< 0.03mm are labeled as clear. We performed some sensitivity tests to
examine the effects of using different threshold values for clear-sky definition. Our results show that the
choices of this threshold value are not sensitive since the ARSCL products are available at more than 70% of
the times. It is well known that the measurements become unreliable when the dome of the radiometer gets
wet (e.g., rain, melting snow, or dew). We therefore use the precipitation flag in the MWRLOS product to
screen out the data contaminated by a wet dome. The values higher than 3.0mm are also excluded from
this study, since they are likely to have large uncertainties caused by precipitation contamination [Liljegren
et al., 2001]. It should be noted that the exclusion of very high LWP values could potentially result in an
underestimation of the tail of the LWP distribution.

Strictly speaking, the LWP time series is a convolution of both spatial and temporal variation of clouds. A common
approach to infer cloud spatial variability from vertically pointing observations is to invoke the Taylor’s
hypothesis [Sun and Thorne, 1995; Powell and Elderkin, 1974]. Taylor’s hypothesis states that when the local
turbulence is small compared with the mean advective flow (i.e., the mean wind), the covariance in time is
related to the covariance in space by the speed of the mean wind [Taylor, 1938; Burghelea et al., 2005]. For
cloud fields, Taylor’s hypothesis seems to apply in most cases [Sun and Thorne, 1995]. Recent advances in
scanning sensors, e.g., scanning radiometers, and volume scanning radars enable direct evaluation of the
Taylor’s hypothesis [Huang et al., 2008; Kneifel et al., 2009; Battaglia et al., 2010; Schween et al., 2011], and
this is out of scope of this study. We assume the validity of Taylor’s hypothesis and interpret the observed
temporal cloud variability as cloud spatial variability accordingly. Assuming the validity of the Taylor’s
hypothesis, the terms grid, gridbox, or averaging window are interchangeably used throughout this paper for
convenience of presentation.

3. Scale Dependence of the Statistical Moments

Cloud variability at different spatial scales is a result of various physical processes. It is almost safe to assume
that in the near future, most climate models will be able to have access to only several low-order statistical
moments of subgrid cloud properties based on prognostic or diagnostic equations. Therefore, to a large
extent, cloud subgrid variability has been, and will likely continue to be, parameterized in terms of several
low-order statistical moments in GCMs. Furthermore, GCM grid sizes have evolved from several hundred
kilometers to subhundred kilometers in the past few decades, and this trend shows no sign of stopping. Even
high-resolution models, such as cloud-resolving and large-eddy simulation models, require parameterization
of processes that occur over the scales smaller than their grid spacings. Thus, this section examines the
variation of the first three statistical moments of cloud LWP, i.e., mean, standard deviation, and skewness, as a
function of gridbox size as measured by the averaging window size.

Figure 2 shows the mean statistical moments of cloud LWP as a function of averaging window size for the
TWP, SGP, and NSA sites. The statistical moments are first calculated in each averaging window, and the
mean moments are then computed for all-cloudy windows. The mean time-average LWP is almost constant
at each site and fluctuates, respectively, around 0.20, 0.18, and 0.13mm across a large range of window
size from a few minutes to 2 days for TWP, SGP, and NSA, respectively. This is an expected result since the
mean time-average LWP only depends on the total liquid water amount in the entire period. The NSA site has
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the lowest LWP. The shaded area indicates the spread (1 standard deviation) of the time-average LWPs at the
TWP site (the spreads of LWP at the other two sites are similar and not shown here). The spread is about
0.38mm for very small window sizes, and it gradually decreases to 0.18mm when the window size exceeds
20 h. Note that the definition of standard deviation used here is different with that used in the rest of the
sections of this paper: the standard deviation (or the spread) of the time-average LWP describes the spread in
the time-average LWP values from the entire period, while the standard deviation used in the rest of this
paper is calculated for the 20 s LWP retrievals within each averaging window.

For all the three sites, the mean standard deviation is close to zero when the window size is very small
(<10min), and it rises sharply with increasing window size (Figures 2b). However, this result does not
necessarily imply that cloud variability will vanish when the window is small, since the microwave radiometer
measurements are smoothed by the relatively wide beam (4 to 6°) of the radiometer. To infer subminute
cloud variability, narrow field of view sensors such as the cloud radar should be used. When the window
increases to larger than 12 h, the mean standard deviation almost levels off and approaches a constant value
(0.3mm at the TWP site, 0.16mm at the SGP site, and 0.05mm at the NSA site). Throughout the range of
the examined window sizes, the mean standard deviation at the TWP site is largest and that at the NSA site
is smallest. Similar behaviors have been found using satellite-based cloud retrieval data [Hill et al., 2012].
The spread of the standard deviation of LWPs at the TWP site is almost constant throughout the examined
window sizes (indicated by the shaded area).

It has been reported in literature that there is a positive relationship between the mean and the standard
deviation of cloud condensate [Barker et al., 1996; Boutle et al., 2013]. To account for this correlation, a
nondimensional parameter, the ratio of standard deviation to mean cloud water content (or the inverse of
this ratio), has been proposed to use in the parameterizations of subgrid cloud heterogeneity [Shonk et al.,
2010; Boutle et al., 2013; Oreopoulos and Davies, 1998]. This ratio has also been widely used in statistical
analysis to characterize the PDF width in the name of coefficient of variation and in cloud physics to measure
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Figure 2. Scale dependence of the statistical moments of cloud LWP. The shaded area indicates the spread about themean
value at the TWP site by 1 standard deviation. (a) Mean grid-average LWP, (b) mean standard deviation, (c) mean relative
dispersion, and (d) mean skewness.
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the relative width of droplet size distributions in the name of relative dispersion [Liu and Daum, 2000].
Throughout this study, this ratio is referred to as relative dispersion. The mean relative dispersion shows
similar dependence on window size as that of the mean standard deviation (Figure 2c): it rises from a close
to zero value (<0.1) to about 1.6 at the TWP site, 0.8 at the SGP site, and 0.4 at the NSA site when the window
size increases from a few minutes to 2 days. It is evident that the mean relative dispersion keeps increasing
with increasing window size, but the slope of curve becomes less steep for larger window sizes. The mean
relative dispersion at the TWP site is higher than that at the other two sites, and the NSA sites has the smallest
relative dispersion across all the examined window sizes.

In all the three sites, the mean skewness of LWP is close to zero when the window size is very small (Figure 2d),
indicating that the distribution of LWP, on average, is almost symmetric in a small time window. The skewness
for individual time window fluctuates a lot and can take either positive or negative values. At the TWP site,
the mean skewness first increases quickly with window size then almost levels off when the time window
reaches 12 h. At the SGP and NSA sites, the increasing rate of mean skewness with increasing window sizes
also decreases with window size, and the curve does not completely level off even when the time window is
larger than 1 day. Among the three sites, the NSA site has the smallest skewness across all the examined
window sizes. The distributions of cloud LWP at the TWP and SGP sites are highly positively skewed for large
window sizes: the mean skewness exceeds 5 when the window size is larger than 1 day.

4. Statistical Moments of Cloud LWP in Current GCM Grid

After examining the scale dependence of the statistical moments of cloud LWP, this section focuses on a more
detailed analysis of the statistical moments at the scale of a typical GCM grid, i.e., the frequency distribution
of these moments. The typical gridbox size of current climate models is ~100 km, corresponding to a 3h time

(a), DJF (b), MAM

(c), JJA (d), SON

Figure 3. Seasonal variation of the n-hour mean cloud LWP distribution at the TWP, SGP, and NSA sites during the period of
1999–2012. The windows size n is chosen to be 5.0, 3.0, and 3.3 h for the three sites based on the typical wind speed at each
site. (a) December, January, and February (DJF); (b) March, April, and May (MAM); (c) June, July, and August; and (d)
September, October, and November. The y axis is the probability density normalized to have unit area under each curve.
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window if a mean wind speed of 10m/s is assumed. Using the radiosonde-based wind measurements from
the ARM Program [Xie et al., 2010], we estimate that the mean horizontal wind speeds at typical liquid cloud
base height are about 6.0, 10, and 9.0m/s at the TWP, SGP, and NSA sites. Therefore, the averaging windows
size n is chosen to be 5.0, 3.0, and 3.3 h for the three sites. For convenience, the term n hour thereinafter
implies 5.0, 3.0, and 3.3 h for the TWP, SGP, and NSA sites, respectively. The statistical moments, i.e., mean,
standard deviation, relative dispersion, and skewness, are first calculated for each n-hour averaging window
using the data from 1999 to 2012. Let q be a statistical moment of the observed cloud LWP; the discretized
PDF of this observed moments can be obtained using equation (1):

P qð Þ ¼ n qi ≤ q < qi þ1

� �
qiþ1 � qi
� �

N
(1)

where N is the total number of moment values and n(q) is the number of moment values falling between qi and
qi+1. The bin sizes of the discretized PDFs for the mean, standard deviation, relative dispersion, and skewness
of LWP are 0.005mm, 0.005mm, 0.05, and 0.1, respectively. We examined the effects of choosing different
bin size for the derived PDFs, and it appears that the shape of the PDF is largely insensitive to the bin size.

4.1. The n-Hour Mean Cloud Water Path

Figure 3 shows the PDFs of n-hour mean LWPat the TWP, SGP, and NSA sites for each season during the period of
1999 to 2012. Spring, summer, autumn, and winter, respectively, correspond to MAM (March, April, and May);
June, July, and August; September, October, and November; and DJF (December, January, and February). The
probability density of n-hour mean LWP peaks at a very small value. At the TWP and SGP sites, the probability
density decreases very quickly to about 10% of the maximum value when the mean LWP exceeds 0.2mm for
all the four seasons. At the NSA site, the mean LWP at which the probability density decreases to about 10% of
the maximum value is about 0.2mm for summer and autumn and 0.1mm for winter and spring. It can be seen

(a), DJF (b), MAM

(c), JJA (d), SON

Figure 4. Seasonal variation of the standard deviation of cloud LWP calculated in n-hour windows at the TWP, SGP, and NSA
sites during the period of 1999–2012. The windows size n is chosen to be 5.0, 3.0, and 3.3 h for the three sites based on the
typical wind speed at each site. (a) December, January, and February (DJF); (b) March, April, and May (MAM); (c) June, July,
and August; and (d) September, October, and November.
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that at all the three sites, the distributions have long tails; therefore, the distributions are positively skewed.
The LWP PDFs at the TWPand SGP sites have almost identical shape in all four seasons; the tail of the distribution
is slightly more significant in the summer season. In summer, similar to the other two sites, the LWP distribution
at the NSA site also has a noticeable tail, but in the other seasons, the NSA site has much less frequent
occurrence of large LWP values than the other two sites, and the slope of probability-LWP curve is much steeper.

4.2. Standard Deviation of Cloud Water Path

While the mean cloud condensate has been widely used in GCM cloud representations, the variance of cloud
condensate is often neglected or only considered by an implicit assumption lurking in relevant parameterization
schemes. Figure 4 shows the seasonal PDFs of the standard deviation of cloud LWP calculated in each n-hour
averaging window at the TWP, SGP, and NSA sites. The annual mean standard deviations at the TWP and
SGP sites have similar magnitudes, being, respectively, 0.15 and 0.12mm, while the NSA site has a much
smaller mean standard deviation (0.04mm). There is considerable variation of seasonal mean standard
deviation at the SGP and NSA sites: the summer season has the largest standard deviation (0.13 and 0.022mm
at the SGP and NSA sites), and the winter season has the lowest standard deviation (0.090 and 0.018 gm�2

at the SGP and NSA sites). The shape of the standard deviation distribution is to some extent similar to that of
the n-hour mean LWP. The probability density peaks at standard deviation values smaller than 0.01mm and
monotonically decreases with increasing standard deviation value. The distribution of standard deviation
at the TWP site has a slightly heavier tail than that at the SGP site, while the NSA site has noticeably fewer
occurrences of large standard deviation values.

4.3. Relative Dispersion of Cloud LWP

The distributions of relative dispersion calculated in each n-hour averaging window at the three ARM sites are
shown in Figure 5. The annual mean relative dispersions at the TWP, SGP, and NSA sites are, respectively, 0.73,

(a), DJF (b), MAM

(c), JJA (d), SON

Figure 5. Seasonal variation of the relative dispersion of cloud LWP calculated in n-hour windows at the TWP, SGP, and NSA
sites during the period of 1999–2012. The windows size n is chosen to be 5.0, 3.0, and 3.3 h for the three sites based on the
typical wind speed at each site. (a) December, January, and February (DJF); (b) March, April, and May (MAM); (c) June, July,
and August; and (d) September, October, and November.
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0.50, and 0.33; these values are lower than those suggested by satellite-based optical thickness observations
[Barker et al., 1996]. It should be noted that Barker et al. [1996] expresses cloud variability in terms of cloud
optical depth, which is a function of both cloud condensate mass and cloud droplet effective radius. The
mean relative dispersion values at the three sites are also lower than those used in some GCM cloud subgrid
variability parameterizations [Morrison and Gettelman, 2008]. The probability density decreases much faster
with increasing relative dispersion value at the NSA site than at the other two sites, resulting in a less tailed
distribution at the NSA site.

Similar to the standard deviation, the SGP and NSA sites show considerable seasonal variation of relative
dispersion. The distributions of relative dispersion have the most noticeable tail in summer, with the mean
relative dispersion being 0.57 and 0.26 at the SGP and NSA sites, respectively. The mean relative dispersion
is 0.40 and 0.22 at these two sites.

4.4. The Skewness of Cloud LWP

Similar to the relative dispersion, skewness is also a nondimensional statistical property of a distribution.
Figure 6 shows the PDF of skewness of LWP calculated in n-hour windows for each season at the three ARM
sites using the data from the period of 1999 to 2012. The annual mean LWP skewness values are, respectively,
2.6, 1.5, and 0.6 at the TWP, SGP, and NSA sites, which confirm the findings in previous studies that the
distributions of LWP have heavy positive tails [Barker et al., 1996]. The LWP at the NSA site has the smaller
skewness, possibly due to the dominance of stratus clouds over the arctic area, while the tropical site, where
deep convection cloud systems are often found in this “warm pool” region, has the largest mean skewness.
All of the three distributions show evident modals, peaking, respectively, at 0.9, 0.4, and 0.2. The peak of the
skewness distribution seems to shift toward larger values when moving from the NSA, to the SGP, and to the
TWP sites. Accompanying this shift, the distribution is getting wider and more positively skewed as moving

(a), DJF (b), MAM

(c), JJA (d),SON

Figure 6. Seasonal variation of the skewness of cloud LWP calculated in n-hour windows at the TWP, SGP, and NSA sites
during the period 1999–2012. The windows size n is chosen to be 5.0, 3.0, and 3.3h for the three sites based on the typical
wind speed at each site. (a) December, January, and February (DJF); (b) March, April, andMay (MAM); (c) June, July, and August;
and (d) September, October, and November.
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from the arctic site to the tropic site. About 2% of the cloudy cases at the NSA site have a skewness larger than 3,
while the TWP and SGP sites, respectively, have more than 20% of the cases with a skewness larger than 3.

The SGP and NSA sites show similar seasonal variation of skewness as relative dispersion and standard deviation,
while the TWP site has much smaller seasonal variation. The mean skewness is, respectively, 1.7 and 0.43 at
the SGP and NSA sites in summer and 0.85 and 0.40 at these two sites in winter.

5. Relationship Between the Moments

As shown in several studies [Tompkins, 2002; Golaz et al., 2002], it is possible to derive prognostic equations
for high-order statistical moments of cloud properties based on high-order turbulence closure schemes.
Phenomenal relationships between high-order moments and low-order moments based on observational
andmodeling studies can be used to provide diagnostic constraints for the high-order moments. This section
examines the relationship between the various statistical moments.

The scatterplot of the n-hour mean and standard deviation of cloud LWP at each site is shown in Figure 7.
The linear regression line is indicated as a black line on each plot. It can be seen that the standard deviation
is positively correlated with the mean LWP with a correlation coefficient (R value) of about 0.8, but the
relationship is largely scattered. This is consistent with the findings in previous observational studies [Kim
et al., 2005]. The slope of the linear regression line of standard deviation (σ) versus n-hour mean LWP (q)
ranges from 0.52 to 0.71 for the three sites, and the uncertainty of the estimated slope is less than 0.01.
The intercept of each regression line is negligible. The regression derived that used all data from the sites is

σ ¼ � 0:0050þ 0:66q (2)

Using the fixed relationship (equation (2)) to approximate the standard deviation of cloud LWP in terms of
mean LWP will result in a mean error of less than 8% in each site. For all of the three sites, the positive
relationship becomes less evident with increasing LWP. A decreasing trend becomes evident when LWP
exceeds 0.9mm. The decreasing trend can be explained by the fact that large mean LWP values are more
likely to be related with overcast sky conditions with a smaller magnitude of variability than partially cloudy
conditions [Hill et al., 2012; Wood and Hartmann, 2006].

Figure 8 shows the scatterplot of the n-hour relative dispersion and mean LWP at the three sites. It can be
seen that there is no well-defined relationship between these two quantities at all three sites. The relative
dispersion fluctuates dramatically between 0 and 3.8 at small LWP values where the sensitivity to LWP is
highest. The variability of relative dispersion decreases with increasing mean LWP and centers around about
0.5 when LWP exceeds 0.8mm. The collapse of the linear relationship between mean LWP and standard
deviation at high LWP values (Figure 7) as well as the large variability of relative dispersion indicate that it is
more appropriate to parameterize the relative dispersion as a function of mean LWP than to use a fixed
relative dispersion value in GCMs [Morrison and Gettelman, 2008].

(a), TWP (b), SGP (c), NSA

Figure 7. Scatterplot of n-hour mean LWP and standard deviation at the (a) TWP, (b) SGP, and (c) NSA sites for the period of
1999 to 2012. The corresponding linear regressions are shown as the black lines.
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The scatterplot of skewness versus mean LWP (Figure 9) appears to have a similar shape as that of relative
dispersion versus mean LWP. There is no meaningful correlation between these two quantities at all three
sites. For small LWP, the skewness has large variation ranging from �2 to almost 10. The TWP site has more
cases with high skewness and low LWP than the other two sites. The range of variation of skewness quickly
shrinks with increasing LWP value. The skewness remains almost constant and fluctuates only slightly around
0.5 when the mean LWP exceeds 0.5mm.

Figure 10 further explores the relationship between skewness and relative dispersion. It can be seen that
there is a positive correlation between the observed skewness and the relative dispersion at all three sites.
A linear regression line forced to have a zero intercept is overlaid on each scatterplot, since the skewness
should be close to zero if the relative dispersion is small. The data points are mostly clustered within the
region of relative dispersion< 1.0 and skewness< 3.0. The slope is, respectively, 2.65, 2.34, and 2.17 for the
TWP, SGP, and NSA sites, and the uncertainty of the estimated slope is less than 0.03. The linear regression
equation based on the data from all three sites is

S ¼ 2:43ε (3)

where S and ε represent the skewness and the relative dispersion. Again, the uncertainty of the estimated
coefficient is about 1%. The correlation coefficient value is about 0.6. Although the slope of skewness versus
relative dispersion at each site is statistically different, using equation (3) will result in an error of less than 10%.

(a), TWP (b), SGP (c), NSA

Figure 9. Scatterplot of the n-hour mean LWP and skewness at the (a) TWP, (b) SGP, and (c) NSA sites for the period of
1999 to 2012.

(a), TWP (b), SGP (c), NSA

Figure 8. Scatterplot of n-hour mean LWP and relative dispersion at the (a) TWP, (b) SGP, and (c) NSA sites for the period of
1999 to 2012.
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6. PDFs of Cloud LWP

Sections 3–5 explore the scale dependence, probability distribution of the statistical moments of cloud LWP,
and the relationship between these moments. The moments are commonly used to determine the
parameters of assumed distribution functions of subgrid cloud condensate. To shed light on which
distribution function is optimal for representing subgrid cloud variability, this section examines which of the
commonly used distribution functions is able to produce consistent results as the observed relationship
between the statistical moments. Specifically, four distribution functions are examined: truncated Gaussian,
gamma, lognormal, and Weibull. Section A1 provides some general description of these distribution
functions. The truncated Gaussian distribution is chosen to be the nonnegative portion of a symmetric
Gaussian distribution; thus, the skewness of a truncated Gaussian is always nonnegative. The gamma and
lognormal distributions are also positively skewed. Depending on the choice of the shape parameter, the
Weibull distribution can be either positively or negatively skewed.

6.1. PDFs of Climatological Cloud LWP

We first use equation (1) with q= LWP to obtain the observed PDF of cloud LWP at the TWP, SGP, and NSA sites
for the period of 1999 to 2012. Figure 11 shows the observed PDFs of cloud LWP at the three ARM sites.

The observed distributions of LWP are all
positively skewed with the most probable
LWP being smaller than 0.05mm. The PDF of
cloud LWP quickly decreases with increasing
LWP. For the TWP site, the probability density
of LWP=0.1mm drops to less than 10% of
its maximum value. The PDF of LWP at the
SGP site decreases slower with increasing
LWP for LWP< 0.07mm but much quicker
for LWP> 0.1mm than at the TWP site
(Figure 11, the logarithm plot). For the NSA
site, the PDF of LWP decreases to 10% and
1% of the maximum value at LWP=0.2mm
and LWP=0.4mm, respectively.

The observed PDFs of cloud LWP are then
approximated by the Gaussian, gamma,
lognormal, andWeibull distribution functions
using a moment-preserving approach. The
moment approach tries to find optimal

(a), TWP (b), SGP (c), NSA

Figure 10. Scatterplot of skewness and relative dispersion of LWP calculated in n-hour windows at the (a) TWP, (b) SGP, and
(c) NSA sites. The linear regression lines are forced to have zero intercept.
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Figure 11. The observed PDFs of 20 s cloud LWP at ARM’s TWP, SGP,
and NSA sites for the period of 1999 to 2012.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022001

HUANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,823



distribution parameters for each distribution
function that produces the same first and
second statistical moments as the original
distributions. More details on how to apply
the moment approach for each distribution
function are provided in section A2. Figure 12
compares the observed PDF of cloud LWP at
the TWP site during the same 14 year period
with the derived Gaussian, gamma, lognormal,
and Weibull distribution functions using the
moment approach. It is clear that all of the
derived distributions underestimate the very
left part of the observed distribution where the
frequency of occurrence is highest but largely
overestimate the right tail of LWP distribution.
The Gaussian distribution function fails to
capture the shape of the observed distribution

and appears to largely overestimate the tail. The derived gamma distribution is similar to the Weibull
distribution across the entire range of LWP. The lognormal distribution appears to better approximate the
right tail of the observed distribution than the gamma and Weibull distributions.

6.2. PDFs of Subgrid Cloud LWP

We use the same approach as that used in section 6.1 to derive distribution functions for each n-hour window
at each site. To judge which distribution function better approximate the observed subgrid-scale distribution
of cloud LWP, one could use popular goodness of fit tests, including the Kolmogorov–Smirnov, Anderson–
Darling, and chi-square tests [Kolmogorov, 1941; Anderson and Darling, 1952]. These goodness of fit tests
typically measure the “distance” between the data and the distribution being tested and compare that
distance to the critical value. In the climate system, many processes such as cloudmicrophysical and radiative
transfer processes differently respond to different portion of the cloud condensate distribution because of
their nonlinear relationships with cloud condensate. Therefore, these widely used goodness of fit tests may
not be the best tools for telling whether a specific distribution function is able to produce accurate grid-
average microphysical or radiative process rates. Furthermore, these tests measure the goodness of fit for
individual functions/curves, not how good a family of distribution functions with different distribution
parameters compare with observations. Thus, this study focuses on testing whether the commonly used
distribution functions are able to produce similar relationship between the nondimensional moments as that
derived from observations and follows an approach similar to that used to identify the best function to
describe the pattern of observed droplet size distributions [Liu and Daum, 2000].

For gamma and lognormal distributions, the relative dispersion and skewness are, respectively, related to each
other by equations (4) and (5):

S ¼ 2ε; for gamma distributions (4)

S ¼ 3εþ ε3; for lognormal distributions (5)

For the truncated Gaussian and Weibull distributions, the relative dispersion and skewness are also uniquely
related to each other in a closed form, although the relationships cannot be expressed in simple analytical forms.

The theoretical relationships between skewness and relative dispersion for the truncated Gaussian, gamma,
lognormal, and Weibull distributions are shown together with the scatterplot of 3 h skewness and relative
dispersion in Figure 13. It can be seen that the truncated Gaussian distribution at best poorly produces
the observed relationship between skewness and relative dispersion when the relative dispersion is small
(relative dispersion< 0.3) and significantly underestimates the skewness for relative dispersion> 0.5. Another
property of the truncated Gaussian distribution is that it cannot produce skewness values larger than one
no matter what parameters are chosen to specify the distribution. The gamma and lognormal distributions
allow only positive skewness, while negative skewness is also found in observations. The Weibull distribution
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Figure 12. The parameterized PDFs of climatological cloud LWP at
the TWP site derived using the moment approach.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022001

HUANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,824



permits both positive and negative skewness
and seems to follow the observations
reasonably well in the examined range of
relative dispersion. The skewness-dispersion
curves of the gamma, lognormal, and
Weibull distributions start to diverge after
the relative dispersion exceeds 0.5: the
lognormal and Weibull curves seem to stay
with the bulk of the scatterplot, while the
gamma curve passes through the lower
portion of the scatterplot.

To further evaluate the four distribution
functions, we introduce a quantitative
measure defined as the shortest distance
of each data point in the scatterplot to
the theoretical curves. A small distance
suggests a better fitting of the corresponding
distribution function. Figure 14 shows the
mean shortest distance for each distribution
function as a function of relative dispersion;
the mean shortest distance is calculated as

the average of distances from the data points to the theoretical curves. A few points are worth noting. First,
the mean shortest distance to the curves increases with increasing relative dispersion values. Second, the
truncated Gaussian distribution results in the largest distance over the whole range of relative dispersion. The
lognormal distribution clearly outperforms the other three distributions when relative dispersion< 1.0, and
this is consistent with Figure 13. For relative dispersion> 1.5, the mean shortest distance of the lognormal
distribution is significantly larger than those of the Weibull and gamma distributions but much smaller than
that of the truncated Gaussian distribution. Overall, it appears that the three heavily tailed distributions, i.e.,
Weibull, Gamma, and lognormal distributions, all reproduce the observed relationship between skewness and
relative dispersion reasonably well. The mean shortest distances are 2.2, 0.46, 0.43, and 0.69 for the truncated
Gaussian, Weibull, gamma, and lognormal distribution functions, respectively.

It is noteworthy that we have examined the PDFs over a wide range of gridbox sizes from 50min to 6 h and
found similar results: the lognormal and gamma distributions best represent the relationship between
skewness and relative dispersion.

7. Summary

We use the 14 year long LWP retrieval data
from theTWP (tropical), SGP (midlatitude), and
NSA (arctic) sites of the DOE ARM Program
to examine the statistical characteristics of
cloud spatial variability. We first examine the
dependence of four statistical moments on
scale (i.e., gridbox size or averaging window
size). The statistical moments examined
in this study include the mean, standard
deviation, relative dispersion (defined as
the ratio of the standard deviation to the
mean), and skewness. It is found that the
mean LWP does not vary with gridbox size.
The standard deviation, relative dispersion,
and skewness monotonically increase with
gridbox size, while the increasing rate
decreases with increasing gridbox size.

Figure 14. Themean shortest distance of data points to each theoretical
curve in Figure 13 as a function of relative dispersion.

Figure 13. The scatterplot of the skewness and the relative dispersion
of LWP calculated in n-hour windows using the data from all the three
sites for the period of 1999 to 2002. The color in the scatterplot indicates
the density of data points. The theoretical curves of the truncated
Gaussian, gamma, lognormal, and Weibull distributions are also shown.
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We then take a close look at the PDFs of the fourmoments calculated in n-hour windows (roughly corresponds to
the gridbox size of present GCMs). There is considerable seasonal variation of the observed statistical moments of
cloud LWP at the SGP and NSA sites, while the seasonal variation is much smaller at the TWP site. The PDFs of
n-hour mean cloud LWP in all the three sites show no modal in the examined range of LWP values (0.03mm to
3mm), and the probability density rapidly decreases with increasing LWP. The mean n-hour standard deviations
at the three sites are, respectively, 0.15, 0.12, and 0.04mm. The PDFs of standard deviation peak at values smaller
than 0.01mm and monotonically decrease with increasing standard deviation value. The NSA site has smaller
standard deviation than the TWP and SGP sites. The mean relative dispersions at the TWP, SGP, and NSA sites are,
respectively, 0.73, 0.50, and 0.33, lower than those suggested by satellite-based optical thickness observations
[Barker et al., 1996] and those used in some GCM cloud subgrid variability parameterizations [Morrison and
Gettelman, 2008]. It is evident that the PDFs of the skewness of n-hour LWP at the three sites have one modal;
the most probable skewness values for the TWP, SGP, and NSA sites are, respectively, 0.9, 0.4, and 0.2.

The relationships between the statistical moments are also explored. There is a positive correlation between
the n-hour mean LWP and the standard deviation with a correlation coefficient of 0.8, but the positive
relationship does not hold for LWP> 0.9mm. The relative dispersion dramatically varies when LWP is small
(LWP< 0.3mm) and tends to converge to around 0.5 for large LWP. There is almost no correlation between
the mean LWP and the skewness. The skewness and the relative dispersion are positively correlated with
an R value of 0.6. The skewness and relative dispersion relationship is reasonably explained by assuming
that the PDF of cloud LWP in each n-hour window is a lognormal, Weibull, or Gamma distribution.

Lastly, we compare the theoretically expected relationship between relative dispersion and skewness for
the truncated Gaussian, gamma, lognormal, and Weibull distributions with the observed relationship. The
results show that constrained by the same mean and standard deviation values, the truncated Gaussian
distribution is unable to produce large skewness or relative dispersion values. The Weibull distribution is
the only one that can produce negative skewness that is found in observations. The theoretical curves of
skewness versus relative dispersion for the gamma and lognormal distributions are similar at small relative
dispersion values and start to diverge after the relative dispersion exceeds 0.5: the lognormal and Weibull
curves stay in the center of the scatterplot, while the gamma curves pass through the lower portion of
the scatterplot. Overall, the three heavily tailed distributions, i.e., the lognormal, Weibull, and Gamma
distributions, better produce the observed relationship between skewness and relative dispersion than the
truncated Gaussian distribution. However, further research is still needed to determine which distribution is
the optimal choice for parameterizing cloud subgrid variability. Since the major motivation of introducing
cloud subgrid variability in GCMs is to improve the parameterizations of cloud microphysical and radiative
transfer processes, we will directly evaluate the accuracy of using such functions to represent subgrid cloud
variability in microphysical process rate and radiative flux calculations in a companion paper.

Appendix A: Statistical Moments of Several Distribution Functions

A1. Commonly Used Distribution Functions
Four distribution functions are used to approximate the observed distribution of cloud LWP; they are truncated
Gaussian, gamma, lognormal, and Weibull distributions [Forbes et al., 2010].

Given the fact that cloud condensate cannot take negative values, the truncated Gaussian distribution can
be expressed as

P qð Þ ¼ e�
q�μð Þ2
2s2ffiffiffiffiffiffi
2π

p
s
=a; for q ≥ 0 (A1)

where a ¼ 1þ erf μffiffi
2

p
s

� �h i
=2 is the normalization factor for the truncated Gaussian distribution.

The PDF of a gamma distribution is

P qð Þ ¼ qk�1e�q=θ

θkΓ kð Þ ; for q > 0 and k; θ > 0 (A2)

Here Γ(k) is the gamma function, k and θ are, respectively, the shape and scale parameters of the
gamma distribution.
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Similarly, the lognormal distribution can be written as

P qð Þ ¼ 1

qs
ffiffiffiffiffiffi
2π

p e�
lnq�μð Þ2
2s2 ; for q > 0 (A3)

The parameters μ and s are, respectively, themean and the standard deviation of the variable’s natural logarithm.

The PDF of a Weibull distribution is

P qð Þ ¼ k
θ

q
θ

� �k�1
e� q=θð Þk ; for q ≥ 0 and k; θ > 0 (A4)

Here k and θ are, respectively, the shape and scale parameters of the Weibull distribution.

A2. Determination of Distribution Parameters Based on Statistical Moments

All of the four distribution functions mentioned above can be specified using two parameters. If the first two
statistical moments, i.e., the mean (q) and the variance (σ2) of cloud water, can be obtained from observations
or models, then it is possible to uniquely determine the distribution parameters.

For the truncated Gaussian distribution, the first two moments can be written as

q ¼ se�μ2=2s2ffiffiffiffiffiffi
2π

p =aþ μ
2

1þ erf
μffiffiffi
2

p
s

� �	 

=a

σ2 ¼ μse�μ2=2s2ffiffiffiffiffiffi
2π

p =aþ μ2 þ s2

2
1þ erf

μffiffiffi
2

p
s

� �	 

=a� q2

(A5)

where a is the normalization factor as mentioned in section A1 and erf is the error function.

For the gamma distribution, the shape and scaling parameters are related to the moments by

q ¼ kθ

σ2 ¼ kθ2
(A6)

For the lognormal distribution, the relationship between the first two statistical moments and the lognormal
parameters can be expressed as

q ¼ e
μþ

s2

2

σ2 ¼ es
2 � 1

� �
e2μþs2

(A7)

For the Weibull distribution, the relationship can be written as

q ¼ θ Γ 1þ 1=kð Þ
σ2 ¼ θ2 Γ 1þ 2=kð Þ � q2

(A8)

The parameters of the truncated Gaussian, gamma, lognormal, and Weibull distributions can be found by,
respectively, solving the equations (A5)–(A8).
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